Introductory Econometrics (MA) - Problem Set 1

1. Conditional expectation function (CEF) & best linear prediction (BLP)

- a) Show that the CEF is the best linear predition in terms of the mean squared error (MSE).
 - Hint: Assume an arbitrary function g(X) and show that $\mathbb{E}([y-g(X)]^2)$ is minimized if $g(X) = \mathbb{E}(y|X)$.
- b) Show that the OLS estimator for β_0 and β_1 in the simple linear regression model minimizes the MSE if the true model is linear.

2. CEF & Linear Regression

Load the dataset HousePrices from package AER and use it to solve the following exercises.

- a) Estimate the effect of the number of bedrooms on house prices using OLS (level-level specification). Do the estimation both manually and using the function lm() implemented in R!
- b) Construct a plot of the OLS regression line and the corresponding residuals.
- c) Verify the numerical properties of the residuals in an OLS regression. What happens if you remove the intercept?
- d) Add *lotsize* as an additional regressor. Use the regression anatomy formula to compute the OLS estimate of the effect of *lotsize* on house prices and compare it to the results obtained when using lm() to estimate the multivariate linear regression model.

3. Mean & Variance of OLS

a) Show that the OLS estimator is unbiased. Which assumptions are required for the unbiasedness of OLS to hold?

- b) Derive the variance-covariance matrix of OLS under the assumption of homoskedasticity.
- c) Derive the variance-covariance matrix of OLS under the assumption of heteroskedasticity.